

Secure MPC via Multi-Party Computation

Nils Schlüter, Philipp Binfet, and Moritz Schulze Darup

Motivation

- Control services and distributed systems require computations on external platforms
- Privacy during data transmission and computations is required

Cryptosystems with Homomorphisms for Secure Computations

- Multiple parties are enabled to perform computations jointly
- Parties must be non-colluding

Additive (2,2) Secret Sharing

- Secrets $z \in \mathbb{Z}_q \coloneqq \left[-\frac{q}{2}, \frac{q}{2}\right) \cap \mathbb{Z}$ with large q can be used in secret sharing
- Choose $z^{(1)} \leftarrow \mathbb{Z}_q$ and set $z^{(2)}$ such that $z = z^{(1)} + z^{(2)} \mod q$
- Efficient protocols for add and mult exist
- Boolean functions are inefficient due to high communication effort

Garbled Circuits

- Enable Boolean functions
- Require (relatively) heavy cryptography and communication
- Cannot be reused

υ	W	y = AND(v, w)		v	W	y		Garbled Circuit
0	0	0		$\ell_0^{\mathbf{v}}$	ℓ_0^{w}	$\ell_0^{\mathbf{y}}$		$\operatorname{Enc}_{\{\ell_1^{\boldsymbol{v}},\ell_0^{\boldsymbol{w}}\}}(\ell_1^{\boldsymbol{y}})$
1	0	0	Random labels	$\ell_1^{\color{red} v}$	ℓ_0^{w}	$\ell_0^{\mathbf{y}}$	Encryption Permutation	$\operatorname{Enc}_{\{\ell_0^{\boldsymbol{v}},\ell_0^{\boldsymbol{w}}\}}(\ell_0^{\boldsymbol{y}})$
0	1	0	100010	$\ell_0^{\mathbf{v}}$	$\ell_1^{\color{red} w}$	$\ell_0^{\mathbf{y}}$	T CITTIGEGETOTI	$\operatorname{Enc}_{\{\ell_1^{\boldsymbol{v}},\ell_0^{\boldsymbol{w}}\}}(\ell_0^{\boldsymbol{y}})$
1	1	1	_	$\ell_1^{\color{red} v}$	$\ell_1^{\color{red} w}$	$\ell_1^{\color{red} {\color{gray} {\scriptsize y}}}$		$\operatorname{Enc}_{\{\ell_1^{\boldsymbol{v}},\ell_0^{\boldsymbol{w}}\}}(\ell_0^{\boldsymbol{y}})$

Convex Decomposition

 Smooth control laws, e.g., explicit MPC can be decomposed into

$$u(\mathbf{x}) \coloneqq \max\{\mathbf{K}\mathbf{x} + \mathbf{c}\} - \max\{\mathbf{L}\mathbf{x} + \mathbf{d}\}$$

Architecture

Confidential Implementation

- In the convex decomposition we use
 - Secret sharing for (+,x)
 - Garbled circuits for max{·}
- Advantages:
 - Each technique used where most efficient
 - No rebuilding of garbled circuits necessary during evaluation of control action

p	MSE	l	t_{avg}
0	$18.57 \cdot 10^{-6}$	16	79 ms
O		32	167 ms
16	$1.99 \cdot 10^{-6}$	16	170 ms
10		32	348 ms

