

Neural networks for predictive control

Dieter Teichrib and Moritz Schulze Darup

Motivation

NN can approximate a large class of

- functions with arbitrary accuracy
- Good topologies leading to $\Phi(x) \approx \pi(x)$ are often unknown
- Use common PWA structure of NN and the control law $\pi(x)$ of linear MPC to derive design guidelines
- For $\boldsymbol{\xi} = (x_1, x_2, x_1^2, x_2^2, x_1 x_2)$, the approach is extendable to PWQ optimal value functions

Stability and performance verification

Mixed-integer formulation of MPC

- Computation of Lipschitz constants for the control law $\pi(x)$
- Reduce online complexity of MPC by removing constraints that are never active

 $\max_{\boldsymbol{x},\boldsymbol{\delta}}\varphi(\boldsymbol{x},\boldsymbol{\delta})$ s.t. $h(x, \delta) \le 0, x \in \mathcal{X}, \delta \in \{0, 1\}^N$

Mixed-integer formulation of NN

- Compute local gain of NN
- Find min/max of the output of an NN

Verification of approximate MPC

- Stability is typically not preserved for approximations of the control law
- Stability of the approximate control law can by verified based on the error: $e(x) \coloneqq \Phi(x) - \pi(x)$
- For ReLU and maxout NN, $\Phi(x)$ can be modelled using binary variables
- Modelling of active constraints of quadratic programs by binary variables

Efficient training of NN for approximating MPC

- Combination with methods from reinforcement learning
- Extension to problems with high dimensional state space

Based on contributions to the 22nd IFAC WC 2023, 20th ECC 2022, and 60th CDC 2021